

WHITE PAPER

The 2017 Guide to WAN Architecture & Design

Table of Contents

The State of the WAN	
The role of the WAN and of a WAN Architecture	1
WAN Evolution	2
WAN Use Cases	3
Concerns with WAN Services	6
Satisfaction with the Current WAN Architecture	7
Location of WAN Functionality	8
Choice of Implementation Options	9
Choice of Vendors	10
WAN Management	11
Hypothetical Company: NeedsToChange	13
VeloCloud Response	16
Planning for a Successful Transition to a New WAN	20
Call to Action	20
Key WAN Architecture and Design Considerations	25

The State of the WAN

The role of the WAN and of a WAN Architecture

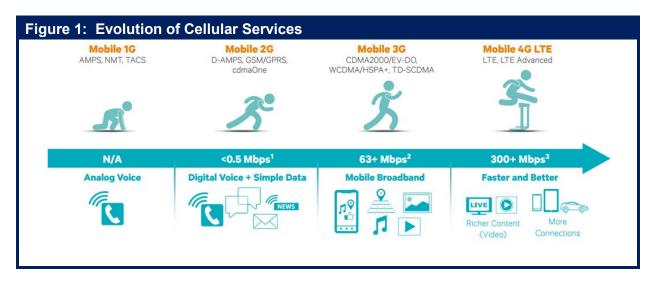
The primary objective of a WAN is to enable business operations in a frictionless, cost-effective manner. This includes supporting the existing business models as well as changes to those models, such as those brought about by the transformation to become a digital business. To accomplish that objective, the WAN must support the existing applications as well as new applications and the adoption of new application architectures, such as those based on cloud native applications.

Applications make varying demands on a WAN based on the application's:

- Location: On premise, cloud based or a combination
- Business criticality;
- Sensitivity to transmission impairments;
- · Security risk;
- Time criticality;
- Compliance requirements;
- Bandwidth requirements;
- Type of user: fixed or mobile or a combination.

The role of a WAN architecture is to enable an organization to deploy a WAN that can adapt quickly to changing business and technical requirements and to respond appropriately to application demands. In order to be effective, a WAN architecture must:

- Ensure acceptable levels of application performance and availability;
- Provide monitoring and management functionality that enables the organization to plan for the deployment of new functionality and to perform rapid root cause analysis and remediation;
- Provide appropriate security;
- Be cost effective.


WAN Evolution

The modern WAN got its start in 1969 with the deployment of the ARPANET which was the precursor to today's Internet. The technology used to build the Internet began to be commercialized in the early 1970s with the development of X.25 based packet switched networks. The Internet itself got commercialized in the 1990s with the advent of the World Wide Web.

In addition to the continued evolution of the Internet, the twenty-year period that began around 1984 saw the deployment of the following four distinct generations of wired WAN technologies and services:

- Mid to late-1980s: Integrated TDM-based WANs;
- Early 1990s: Frame Relay;
- Mid to late 1990s: ATM (Asynchronous Transfer Mode);
- Early 2000s: MPLS.

The early to mid-1980s also saw the beginning of the deployment of four generations of cellular services. Figure 3 depicts the evolution of cellular services from the 1G services of the 1980s to the current generation of 4G LTE services. The next generation of cellular services, denoted 5G, should be in production in the 2018 to 2020 timeframe.

WAN services that were based on Ethernet technology, such as Carrier Ethernet, began to be deployed in the early 2000s primarily to support high speed connectivity in a metropolitan area. These services are also used in some instances for high speed Internet access and to interconnect data centers.

Why is this important?

2017 Guide to WAN Architecture and Design

Unlike virtually every other component of IT, there have been very few if any advances in wired WAN technologies and services for over a decade. Because the types of challenges that the WAN must respond to have evolved significantly during that time frame, there is a pent up demand for new WAN solutions.

WAN Use Cases

The vast majority of WAN use cases can be put into three broad categories:

- Connecting a distributed set of people and devices to centralized resources;
- Connecting multiple data centers;
- Providing peer-to-peer connectivity.

Connecting a distributed set of people and devices to centralized resources

Over the last twelve to eighteen months the vast majority of what has been written about the WAN has focused on providing connectivity between the users in a branch office and the resources they need to access, whether those resources are in a corporate data center or at a public cloud provider's facility. Some of the challenges of this use case are to minimize cost and to provide secure Internet access.

There are, however, other important use cases in this category. That includes supporting:

- Home users:
- Mobile employees:
- The loT.

The challenges that are associated with the three use cases listed above are somewhat different than the challenges that are associated with providing branch office connectivity. This follows in part because in each of the use cases listed above it is more difficult, if not impossible, to implement distributed functionality to improve performance, management or security. In addition, similar to supporting mobile workers, in many instances supporting the IoT requires the use of cellular services which have notably different characteristics than do wireline WAN services.

Connecting multiple data centers

In the not too distant past, the primary use cases in this category were disaster recovery and business continuity. While those are still important use cases, another important use case, supporting the movement of workloads between data centers, has recently emerged.

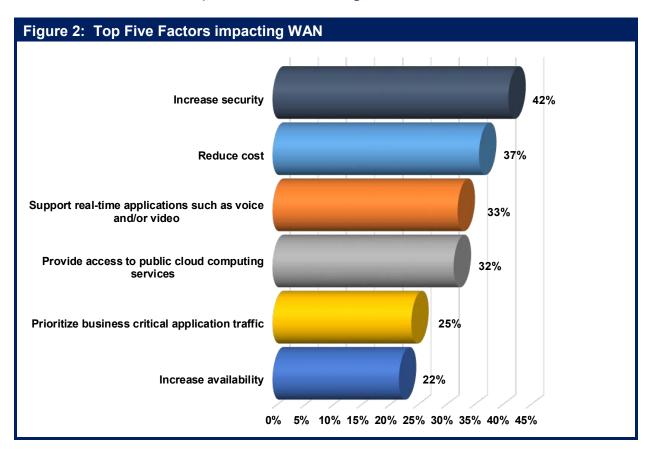
This category of WAN use cases has a number of key characteristics that differ from the preceding category including the requirement for significantly more throughput and in many cases, for higher availability. This category of WAN use cases also introduces protocols that are not found in other categories and this category is often associated with WAN services, such as Carrier Ethernet, which have little relevance to the other categories.

Providing peer-to-peer connectivity

In contrast to the other categories of WAN uses cases, in a peer-to-peer WAN, tasks are partitioned between peers. Peers typically make a portion of their resources, such as processing power, disk storage or network bandwidth, directly available to other network participants, without the need for central coordination.

One key use case of a peer-to-peer WAN, file sharing, is often associated with illegal activities. However, there are legitimate instances of this use case such as <u>Lion Share</u> which enables academic institutions to share scholarly documents. A number of emerging applications also

use peer-to-peer WANs. This includes <u>Spotify</u> which uses a peer-to-peer network along with streaming servers to stream audio and video to their clients. It also includes <u>Bitcoin</u> and other alternative currencies such as <u>Peercoin</u> and <u>Nxt</u>.


Why is this important?

For the foreseeable future there will not be a WAN solution that is optimal for all organizations. The optimal WAN solution will depend on a number of factors, including the use case(s) it has to support.

Factors Impacting the WAN

The Survey Respondents were presented with fifteen factors and asked to choose the three factors that would likely have the most impact on their WAN over the next twelve months. The factors that were the most important are shown in **Figure 4**.

If there is a mild surprise in **Figure 4** it is that a third of The Survey Respondents indicated that providing access to public cloud services is one of the top factors impacting their WAN. This is a bit of a surprise only because unlike the other factors in **Figure 4**, until recently providing access to public cloud services was seldom mentioned as a factor driving change in the WAN.

It was not surprising that eighteen percent of The Survey Respondents indicated that supporting mobile users is one of the top factors impacting their WAN. However, an important and somewhat surprising result that is not shown in **Figure 4** is that sixteen percent of The Survey Respondents indicated that supporting the IoT was one of the top factors impacting their WAN. This is surprising only in that the vast majority of companies are just beginning to feel the impact of the IoT and this impact will likely increase significantly over the next few years.

Why is this important?

In order to justify the cost and the risk of implementing a new WAN solution, that solution must enable organizations to respond to at least some of the challenges shown in **Figure 4**.

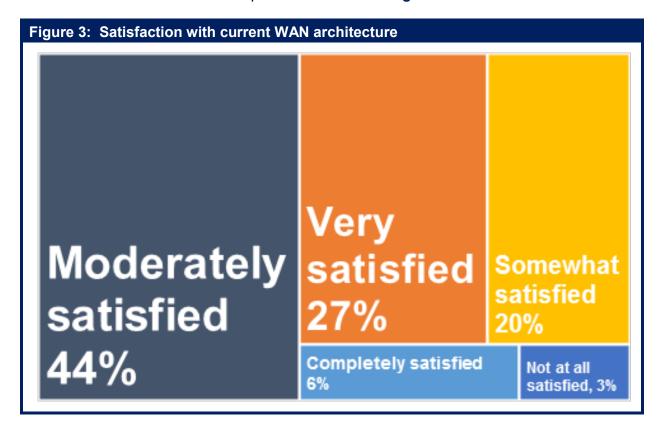
Concerns with WAN Services

As discussed in <u>The 2015 Guide to WAN Architecture and Design</u>, network organizations currently make relatively little use of wired WAN services other than MPLS and the Internet and the use they do make of those other services is decreasing somewhat rapidly. That report also identified the concerns that network organizations have with those two services. Those concerns are shown in **Table 1** in descending order of importance.

Table 1: Concerns with WAN Services	
Concerns with MPLS	Concerns with the Internet
Cost	Security
Uptime	Uptime
Latency	Latency
Lead time to implement new circuits	Cost
Security	Packet loss
Lead time to increase capacity on existing circuits	Lead time to increase capacity on existing circuits
Packet loss	Lead time to implement new circuits
Jitter	Jitter

Wireline services are not the only WAN services that have limitations. Some of the limitations that are associated with cellular services include:

- Variable signal coverage;
- Link setup latency;
- Constantly evolving specs (3G, 4G, LTE, XLTE, 5G);
- Security;
- Supporting multiple carriers simultaneously.


Why is this important?

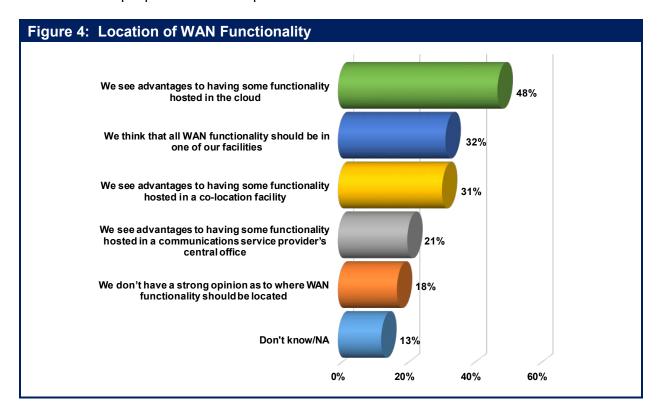
In order to provide value, any WAN solution that is comprised of multiple WAN services, whether they are wired or wireless services, must maximize the advantages of each service while simultaneously minimizing their disadvantages.

Satisfaction with the Current WAN Architecture

The Survey Respondents were asked to indicate how satisfied their organization was with their current WAN architecture. Their responses are shown in **Figure 5**.

Why is this important?

As shown in **Figure 5**, only a third of organizations are either very satisfied or completely satisfied with their current WAN architecture. This indicates that a large portion of the WAN marketplace would likely be receptive to alternative WAN architectures.



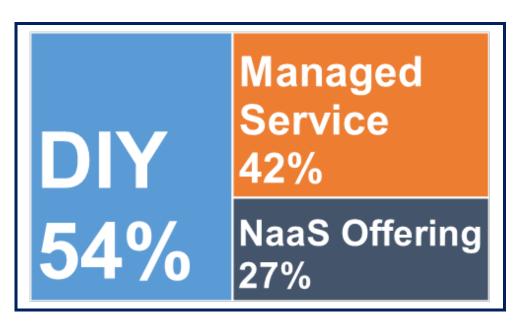
Location of WAN Functionality

In contrast to traditional WAN architectures, in the emerging WAN architectures there are a number of places to host functionality such as orchestration, control and security. Those locations include:

- At the customer's branch offices;
- In a service provider's central office;
- At the customer's regional office or data centers;
- In a cloud site provided by a vendor;
- At a co-location facility;
- At a public cloud provider's facility.

The Survey Respondents were asked to indicate where their organization thinks that WAN functionality such as control, optimization and security should be located, and they were allowed to indicate multiple places. Their responses are shown in .

Why is this important?


It indicates that a sizeable percentage of The Survey
Respondents either didn't know where their organization
believes that key WAN functionality should be hosted or they
worked for an organization that didn't yet have a strong opinion.
However, looking just at those organizations that have an opinion shows
that many network organizations are receptive to a range of options
relative to where WAN functionality is hosted. It also shows a strong
interest in having some WAN functionality hosted in the cloud.

Choice of Implementation Options

When network organizations evaluate new WAN solutions they have a variety of implementation options to consider. This includes:

- Do-it-Yourself
 In the Do-it-Yourself (DIY) option, network organizations are responsible for all facets of the lifecycle of a WAN solution, including the planning, designing, implementing and ongoing management of the solution.
- Managed Service
 In this option a vendor such as a Communications Service Provider (CSP), systems integrator or value added reseller takes on the responsibility for all facets of the lifecycle of a WAN solution.
- Numerous CSPs have either already launched or have announced their intention to launch a Network-as-a-Service (NaaS) offering based on Software Defined Networking (SDN) and/or Network Functions Virtualization (NFV).

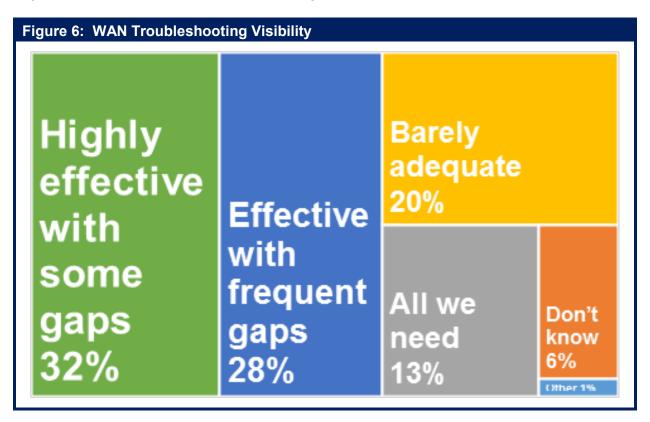
The Survey
Respondents
were asked to
indicate which
implementation
option their
organization was
most likely to
implement and
they were allowed
to indicate
multiple choices.

Why is this important?

One way to look at the survey results is that the DIY option is the preferred option by a relatively wide margin. However, another way to look at the survey results is to observe that the combination of a managed service and a NaaS solution are preferred over the DIY option by a relatively wide margin. In either case, the responses to this question provide further evidence that there isn't a WAN solution that is optimal for all organizations.

Choice of Vendors

Whenever there is a transition point in IT there is the potential that some vendors will gain market share and that some will lose market share. After more than a decade with little change in the available WAN products and services, the emergence or a broad range of new WAN related products and services marks the beginning of a major transition in the WAN market. The Survey Respondents were asked to indicate how their organization would likely approach the selection of a WAN vendor and they were allowed to indicate multiple choices. Their responses are shown in **Figure 7**.


Why is this important?

The fact that only 6% of The Survey Respondents indicated that they would definitely stick with their incumbent vendor(s) and that an additional 13% indicated that it was unlikely that they would stick with their incumbent vendor indicates that many network organizations are receptive to changing WAN vendors.

WAN Management

The Survey Respondents were asked to rate the visibility that their network organization has into their WAN for troubleshooting problems related to network and/or application performance degradation. Their responses are shown in **Figure 8**.

The survey results indicate that only a small percentage of network organizations have all of the visibility they need to effectively troubleshoot WAN performance problems.

As companies continually increase their reliance on the WAN in order to support critical business processes, the inability of the network organization to effectively trouble shoot the WAN will increasingly have a negative impact on those critical business processes. The deployment of new WAN solutions is an opportunity for network organizations to improve their ability to troubleshoot the WAN and hence improve their ability to support the company's critical business processes. The deployment of new WAN solutions also presents network organizations with a challenge. That challenge is that network organizations must have a tool that can effectively manage the new WAN solution throughout its lifecycle. Having such a tool significantly reduces the risk that is associated with adopting a new WAN solution.

As noted, if network organizations want to implement new WAN solutions they need an effective management tool before, during and after that implementation. To exemplify why that is the case, consider the situation in which a hypothetical network organization is interested in potentially adopting a Software Defined WAN (SD-WAN) solution. Prior to beginning its evaluation of SD-WAN solutions, the network organization needs to have an effective management tool that enables the organization to baseline the performance of its WAN and the performance of the business critical applications that transit the WAN. This is necessary so that

the organization has the performance data it needs so that it can evaluate the impact of implementing one or more SD-WAN solutions.

Before deciding to adopt an SD-WAN solution the network organization decides to run a proof of concept (POC) of one or more SD-WAN solutions. The primary goal of conducting a POC is to determine whether or not the solution will provide the promised benefits. The sites that are included in the POC must be chosen in such a way that if the solution is effective there then it will likely be successful in the remaining sites. An effective management tool can help the organization to choose the appropriate sites for the POC based on factors such as application and network usage. An effective management tool also provides insight that helps the network organization determine whether or not the solution provides the promised benefits. Because it provides this insight, the output of an effective management tool is a key input into the analysis that the network organization does to determine if it makes sense to adopt an SD-WAN solution.

While conducting a POC provides insight into the performance of an SD-WAN solution, the amount of insight increases as the network organization begins to implement the solution and more sites and more applications are supported by the solution. Using an effective management tool during the implementation phase of adopting an SD-WAN solution enables the network organization to fine tune its use of that solution. For example, the network organization may use the data generated by that tool to decide to change its policy about which WAN links an application can transit.

Unfortunately, the adoption of new WAN architectures, such as an SD-WAN, has the potential to further complicate the task of ongoing WAN management. As a result, adopting a new WAN architecture further increases the importance of having an effective management tool. One of the reasons why adopting an SD-WAN further complicates ongoing management is because SD-WANs introduce a new device into the WAN which must be managed. That device is referred to as a controller and its role is to support the central management of policy that enables network-wide policy definition and enforcement. One of the management challenges associated with the controller is that under heavy load the controller can add excessive delay. Another challenge is that the communications between the controller and the end devices must now be managed.

Another reason why the adoption of SD-WANs has the potential to further complicate the task of WAN management is that many SD-WAN solutions feature dynamic load balancing of traffic over multiple WAN links. Hence, network organizations that are trying to troubleshoot performance problems with an SD-WAN have a new management question they need to be able to answer. That question is: Which link or links did the traffic transit and how did that change over time?

Why is this important?

Having effective WAN management solutions significantly reduces the risk that is associated with adopting new WAN solutions and it enables network organizations to better support the company's critical business processes.

Hypothetical Company: NeedsToChange

Each of the 7 sponsors was given the description of a hypothetical company: NeedsToChange. The goal was to present each sponsor with the description of a company that has a traditional WAN and ask them to provide their insight into how the company should evolve its WAN.

Even within the context of a traditional WAN, there is a wide breadth of options relative to a company's WAN topology, services, applications and goals. As a result of this breadth, it wasn't feasible to cover all possible options in a reasonably sized description of NeedsToChange's WAN. In order to limit the size of the description of NeedsToChange's WAN and yet still bring out a wide array of important WAN options, each sponsor was allowed to embellish the description of NeedsToChange's WAN. They could, for example, add additional data centers or key applications; vary the amount of traffic that was backhauled; prioritize the factors impacting NeedToChange's WAN or identify business drivers such as the need to support mergers and acquisitions.

Below is the description of NeedsToChange's WAN that each sponsor received.

1. Data Centers

NeedsToChange has a class A data center in Salt Lake City, Utah. The site has two diversely routed T3 links into an MPLS network and a 100 Mbps link to the Internet.

2. Traffic Prioritization

In the current environment, traffic is prioritized in a static manner; e.g., voice traffic always gets top priority and it receives a set amount of bandwidth.

3. Business Critical Data Applications

Two of NeedsToChange's business critical applications are SAP and Product Data Management (PDM). PDM is NeedsToChange's most bandwidth intensive application, however it is widely understood that NeedsToChange runs its business on SAP and so the performance of SAP is critical. In addition to the applications that NeedsToChange uses to run its business, the company uses an Infrastructure as a Service (laaS) provider for disaster recovery (DR).

4. Public Cloud Computing Services

Other than its use of an laaS site for DR, NeedsToChange currently makes relatively modest use of public cloud computing services. However, the company has started to implement Office 365 and the decision has been made that on a going forward basis, unless there is a compelling reason not to do it, any new application that the company needs will be acquired from a Software as a Service (SaaS) provider.

5. Voice and Video

NeedsToChange supports a modest but rapidly growing amount of real time IP traffic, including voice, traditional video and telepresence.

6. Internet Access

NeedsToChange currently backhauls over half of its Internet traffic to its data center in Salt Lake City. The company is looking to enable direct Internet access from their branch offices but they are concerned about security. NeedsToChange is also concerned that it is supporting non-business related Internet traffic that is negatively impacting business traffic.

7. Mobile Workers

Roughly half of NeedsToChange's employees regularly work somewhere other than a company facility.

8. Guest Workers

NeedsToChange's network organization is considering offering guest WiFi access from at least some of its facilities.

9. Branch Offices

NeedsToChange categorizes its branch offices into three categories: small, medium and large.

- A small office/site has between 5 and 25 employees. These sites are connected by an MPLS network with each site having either a single T1 link or multiple T1 links that are bonded. All of its Internet traffic is backhauled.
- A medium office/site has between 25 and 100 employees. These sites are connected by an MPLS network with each site having capacity between a single T1 link and a link running at 10 Mbps. All of its Internet traffic is backhauled.
- A large office/site has more than 100 employees. These sites are connected to an MPLS network either by using bonded T1 links or by a T3 link. They also have direct Internet connectivity which in most cases runs at 10 Mbps over DSL.

10. Branch Office Availability

NeedsToChange wants to improve the availability of the WAN access at its branch offices and has established a goal of 99.99% availability.

11. IoT

The company has begun a smart business initiative which the company believes is just the first in a number of initiatives that will quickly drive the need for them to support thousands, if not tens of thousands, of devices.

12. Visibility

In the majority of instances in which the performance of one of NeedsToChange's business critical applications begins to degrade, the degradation is noticed first by the end users. In addition, the time it takes to identify and resolve performance problems has been increasing.

13. Regulations

NeedsToChange is subject to PCI compliance. That is just one factor driving NeedsToChange to seek out ways to increase its security.

14. Factors Driving Change

While not in priority order, the following factors are driving NeedsToChange to seek alternative WAN designs:

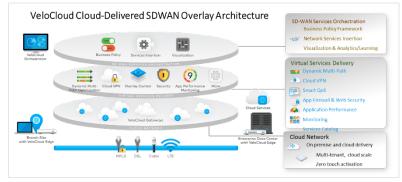
- Improve application performance, notably for SAP;
- Reduce cost:
- Increase uptime;
- Reduce the time it takes to identify and remediate performance problems;
- Increase security;
- Reduce complexity;
- Provide access to public cloud computing services in general and Office 365 in particular;
- Provide better support for real time applications;
- Reduce the time it takes to implement new network services;
- Increased agility both in terms of supporting new facilities and in supporting growth within existing facilities

Balancing off the factors driving NeedsToChange to seek alternative WAN designs is the fact that NeedsToChange will not be allowed to increase the size of its network organization.

NTC Tackles the Future with VeloCloud Cloud-Delivered SD-WAN: Fast. Agile. Secure.

Speed has become the currency of business, and security threats have multiplied and soared in sophistication. Internet-connected devices (IoT) are growing explosively and has been an integral part of NTC's network traffic growth. They have already investigated the cloud-based application industry trend and confirmed that NTC's IT strategy should leverage this direction to gain agility and cost savings.

NeedsToChange (NTC) is aggressively rolling out Office365 to boost productivity and enable mobile users—but it plays havoc with visibility into traditional traffic patterns. While NTC is still a reasonable-sized company—3000 employees across 50 sites—there is a distinct possibility that a near-term acquisition will double the number of sites and headcount, as well as add another data center.

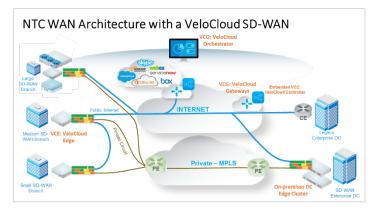

IT staff is concerned that the current WAN architecture—static traffic management, distributed policy enforcement, fixed-bandwidth access links, MPLS contracts—cannot prepare NTC adequately to support digital business imperatives and general network upgrades at current funding and staffing levels. There is no time for a slow evolution of equipment and connectivity, and there is no funding or staffing for a replacement.

A Network for the Future

VeloCloud Cloud-Delivered SD-WAN, overlaying NTC's existing traditional WAN, immediately delivers many benefits and positions NTC favorably for growth, industry trends and the potential acquisition, while also leveraging existing WAN infrastructure investments. Cloud-based applications are seamlessly integrated and immediately rolled out with equal access to mobile and branch-site users. Traffic is routed via the shortest path to either the NTC data center or cloud-based applications. Adding a broadband link per site relieves bandwidth limitations, delivers the goal of direct Internet access, supports IoT, increases application performance, and improves branch uptime. Security is simplified and strengthened by inserting VNF firewalling and traffic inspection in each network site, and using VeloCloud built-in automated VPN technology. VeloCloud cloud-delivered orchestration provides network-wide dashboards, traffic and performance visibility, as well as centralized policy control.

A VeloCloud Cloud-Delivered SD-WAN for NTC

The illustration shows the VeloCloud overlay architecture. Transport-independence works across *any* combination of circuits that NTC deploys. Branch offices and data centers may be equipped with virtual

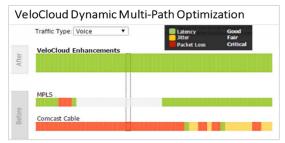

or hardware-based VeloCloud platforms, replacing or augmenting legacy equipment.

The network layer—consisting of VeloCloud Gateways, either on-premises or provider-based—enables connectivity to both enterprise data centers and laaS/SaaS applications. A rich set of

virtual services, including those from ecosystems partners, are easily deployable from an application catalog. One essential service dynamically optimizes traffic over multiple links. At the top of the figure, the orchestration layer covers monitoring, configuration, policy coordination and unprecedented network visibility.

NTC Network Architecture: SD-WAN at Work

NTC's network architecture after implementing a VeloCloud Cloud-Delivered SD-WAN is shown below. Every site has broadband Internet and traditional MPLS connectivity. New sites do not require MPLS, and older sites may migrate to broadband when the MPLS contract expires, or both link types may coexist indefinitely. NTC can make the most cost-effective decision per site. VeloCloud Dynamic Multi-path Optimization ensures a superior grade of service over any type of link.

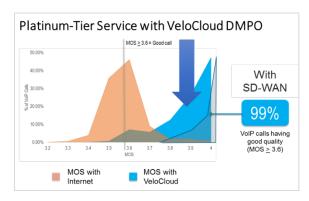

Most branch sites would be equipped with a hardware-based VeloCloud Edge platform (automatically deployed via the Zero-Touch capability), although larger sites that already support VM-hosting could be deployed with a VNF Edge. Data centers can be connected no-touch with legacy equipment, or with VeloCloud Hub Edges (virtual or hardware-based) when the time for site refresh is optimal.

Security services such as VNF firewalling are hosted in each site to secure the broadband connections. This eliminates the need to backhaul traffic to the data center—resulting in a better end-user experience and cost savings when the freed-up bandwidth is reused for PDM or other application traffic.

Essential Network Capabilities

Transport-Independent Branch Connectivity

VeloCloud's unique technology bundles traffic across multiple links and ensures enterprise-quality performance and security. A broadband link per site provides for NTC's desired Internet connectivity, relieving the backhauling of traffic through the data center, and also delivers critically-needed cost-effective bandwidth for IoT growth and convenient access for mobile users.

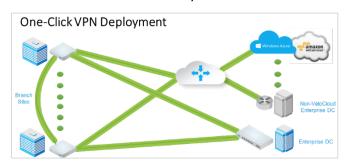

Links are auto-selected for traffic steering on a perpacket basis, based on (1) policy-driven priorities and business preferences, (2) auto-detection of application type, and (3) currently measured link performance. Midflow re-steering happens dynamically when changing link conditions are detected.

The illustration shows how VeloCloud technology achieves excellent performance across multiple links, each individually of lesser quality. The bundled multi-link connections (MPLS, broadband, LTE) provide increased branch uptime, headroom for IoT

traffic, and elastic increases in cost-effective bandwidth.

Real-time Traffic—Superior QoS over Broadband

VeloCloud Dynamic Multi-path Optimization (DMPO) is a unique VeloCloud capability that assures application performance over any link types. A MOS score exceeding 3.6 (a good call) is maintained for 99% of calls with VeloCloud DMPO, while only 60% of calls achieve this without VeloCloud.



DMPO includes (1) *Continuous Monitoring and Analytics*: automatic capacity testing, link and path quality monitoring, tracking bandwidth, quality, packet loss, delay, and jitter; (2) *Dynamic Application Steering:* application-aware packet steering, aggregated bandwidth for single flows, maximizing throughput, sub-second reactions to network glitches ensuring no application impact; (3) *On-Demand Remediation*: error and jitter correction, automatic steering around brownouts/blackouts, link repair.

DMPO maintains exceptional call quality and call success rates, and keeps video smooth and visible. IoT devices often reply on real-time-sensitive traffic that can be safely supported by deploying DMPO over broadband links.

Security

VPN deployment is significantly simplified with a VeloCloud SD-WAN. VPN any-site-to-any-site tunnels are automatically set up and secure all connections with strong PKI end-to-end encryption. Interoperable IPsec is supported directly to NTC's existing data center, and also connects to cloud-hosted data centers which may be a future NTC direction.

Scalability is achieved by eliminating the need for static hub-and-spoke VPN tunnels, and cost savings and simplicity derive from the automatic and dynamic set up of required tunnels.

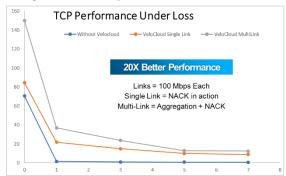
Additional security services can be easily inserted with virtual instances of firewalls or other inspection engines. The cloud-delivered

nature of a VeloCloud SD-WAN provides easy leveraging of cloud-based security providers offering sophisticated and cost-effective security with less demand on NTC IT staff.

Cloud Migration

Cloud applications can be accessed via the most direct path between the VeloCloud Edge and Gateway—a dynamic VPN tunnel ensures secure access with the Gateway dynamically bookending and aggregating connections on the cloud side. NTC can leverage VeloCloud or partner providers' multitenant Gateways already in place for IaaS and SaaS.

Orchestration


Cloud orchestration and controllers eliminate complexity and provide network-wide visibility and

control of policies and traffic patterns. Orchestration is hosted in the cloud or installed on-premises. As NTC commences rolling out SD-WAN capability, a hosted solution provides an easy entry point, while installing an on-premises solution may be preferable as deployment expands and the network hardens, especially if the expected acquisition takes place.

The VeloCloud orchestrator provides a consolidated dashboard for complete lifecycle management, including SLA measurements, remote diagnostics, link quality views, application analytics and bandwidth usage, network-wide business policy automation for traffic including voice and video, granular application and security policies, and multi-tenancy. The Zero-touch capability dramatically accelerates provisioning of new sites, while also significantly reducing IT staffing and costs.

Application Performance

Using the shortest path between the user and the accessed cloud site, in conjunction with VeloCloud

Inbound Multi-source QoS and TCP Link Optimization capabilities, ensure optimal application performance. VeloCloud's Dynamic Application Steering and On-Demand Remediation capabilities allow sub-second packet steering around network problems to provide optimized performance for all traffic, and delivers a superior grade of service for real-time traffic to laaS/SaaS sites as well as legacy data center applications.

Conclusion

VeloCloud Cloud-Delivered SD-WAN offers an overlay network architecture allowing flexible, cost-effective incremental migration, and legacy interoperability. Cost reduction results from Zero-touch site deployment, multi-link bandwidth aggregation and optimization, technologies ensuring enterprise-grade service over broadband links, virtual and hardware options for Edge and Gateway services, and dramatic simplifications in cloud application access and VPN tunnel configurations. Security is always up-to-date with the options of virtual service insertion or using a cloud security provider. The transport independent connectivity (including MPLS, Broadband, LTE, and cable) allows for cost-effective link redundancy and increased branch uptime, agility in connectivity, ready access for mobile users, and economical incremental bandwidth for IoT.

VeloCloud SD-WAN customers have realized many benefits, including migrating successfully to 100% Internet links without network redesign, achieving enterprise-quality connectivity with capacity better than the prior MPLS service, reducing branch migration to thirty minutes, meeting PCI 3.0 compliance, significantly reducing OPEX costs with VNF and Zero-Touch deployment, maintaining exceptional voice quality with greatly improved call completion, one-click propagation of services and policies across the WAN, lowering bandwidth costs, and improving performance for real-time cloud applications

VeloCloud can help NTC address enterprise IT challenges with a fast, simple, secure Cloud-Delivered SD-WAN to achieve reduced complexity, easy migration to cloud applications and services, simplified traffic patterns, and distributed Internet access.

Planning for a Successful Transition to a New WAN

Call to Action

Introduction

In the novel Alice and Wonderland¹, Lewis Carroll used the following dialogue between Alice and the Cheshire Cat to explain the need for planning.

Alice: "Would you tell me, please, which way I ought to go from here?"

The Cheshire Cat: "That depends a good deal on where you want to get to."

Alice: "I don't much care where."

The Cheshire Cat: "Then it doesn't much matter which way you go."

Alice: "...So long as I get somewhere."

The Cheshire Cat: "Oh, you're sure to do that, if only you walk long enough."

The relevance of the preceding dialogue to the process of a company's migration from their current to their next WAN is that without a plan that includes a clear sense of what the company is trying to accomplish, then the only way that the company is guaranteed of success is if it implements all possible WAN solutions.

The creation of a business case to justify adopting a new WAN solution is the last topic discussed in this sub-section of The Guide. However, network organizations should create an outline of the business case at the very beginning of the project and use that outline to drive the creation of the project plan. The reason for doing this is to ensure that the project is set up in such a way that it gathers all of the information necessary to create a compelling business case.

At the same time that the network organization creates the outline of the business case they should also begin a dialogue with anyone who is a key stakeholder in the process. In this context, the *key stakeholders* are whoever signs to authorize paying for the new solution as well as anyone who has a significant influence over the decision process, particularly those people who can either cause the project to be delayed or cancelled. A key component of this dialogue is to identify the stakeholder's primary business and technology concerns as well as to get their input on the overall direction of the project. The reason to start the dialogue early in the process is because at various times during the project, whether that is getting permission to do a trial or requesting financial authorization to acquire a solution, the project team is going to need management's buy-in. It's a lot easier and faster to get that buy-in if the team identifies up front the issues that are most important to the key stakeholders and works to address those issues throughout the project.

¹ http://www.goodreads.com/quotes/225938-would-you-tell-me-please-which-way-i-ought-to

The following sub-sections outline some of the key components of a project plan for evaluating WAN solutions. The intention is that network organizations will modify this outline to suit their environment.

Identify the Focus of the Project and the WAN Challenges

The term *WAN* refers to a wide range of types of connectivity. The primary uses of the term WAN refer to connecting a:

- Data center to either another data center or a public cloud facility;
- Branch office to either a data center, a public cloud facility or a web site;
- Home office to either a data center, a public cloud facility or a web site;
- Remote user to either a data center, a public cloud facility or a web site;
- Thing, such as a car or a school bus, to either a data center, a public cloud facility or a
 web site.

As part of creating the project plan, the network organization needs to decide on the focus of the project because the type of solutions that are appropriate for some classes of WAN challenges, such as providing connectivity between and amongst a company's data centers, may not be appropriate for a different class of WAN challenges, such as providing connectivity to remote users or to things. The network organization should also decide the type of solution or solutions that it wants to evaluate; e.g., Do-It-Yourself (DIY), managed service or Network-as-a-Service (NaaS). Those decisions should be reviewed with the key stakeholders.

Once the focus has been determined, the project team should identify the WAN challenges that they are currently facing or expect to face and use these challenges to structure their analysis of alternative WAN solutions. For most companies the key WAN challenges include improving application performance, increasing availability, reducing cost and increasing security. However, since every company is somewhat unique, just identifying these challenges isn't enough. The team should also assign a weight to each challenge. The challenges and the weights that are assigned to them should be reviewed with the key stakeholders.

Agree on the Extent of the Analysis

In conjunction with the key stakeholders, the project team needs to determine how broad and how deep of an analysis it will do. A broad and deep analysis can yield more insight than would be produced by a more cursory analysis. However, the broader and deeper the analysis the more it costs and the longer it takes.

Network organizations who want to do a broad and deep analysis often create a Request for Information (RFI) to be sent to numerous possible providers. However, a large and increasing number of organizations are avoiding issuing formal RFIs and instead are engaging in somewhat brief conversations with a small number of WAN providers. They hold these conversations prior to moving forward with a production test by either piloting a WAN solution or conducting a POC of one.

Create an Effective Project Team

As part of evaluating alternative WAN designs, there are a number of components of each design that need to be analyzed. For the sake of example, let's assume there are four primary components of each design which need to be analyzed and those components are the:

- · Underlying technologies;
- Ability to manage the technologies;
- Security implications associated with the new technologies and design;
- Financial implications of each design.

One viable option is to have a four-person team where each team member is a subject matter expert (SME) on one of the above components². For example, the team could include a SME from the organization's Network Operations Center (NOC). The role of that team member is to ensure that the NOC will be able to manage whatever technologies are eventually implemented.

Choose Vendors

As described above, the decisions that are made relative to the breadth and depth of the analysis of alternative solutions can have a dramatic impact on the amount of time and resources consumed by the process. That is just one of the reasons why the project team needs to choose potential vendors carefully. A reasonable strategy is to enter into a high level conversation with what the team determines to be a feasible set of vendors. If the content of those conversations impresses the team, they can do a deeper analysis with a short list of vendors who they believe can best meet their needs. This approach balances off the desire to do a broad analysis of emerging solutions with the need to conserve IT resources.

One of the primary challenges of this approach is being able to understand vendors' strategies well enough to choose a feasible set of vendors while having minimum, if any, direct vendor interaction. One way to respond to this challenge is to subscribe to expensive third party services that analyze vendor offerings. As an alternative or as a supplement to relying on information from expensive third party services, this e-book provides detailed insight into the WAN vision and strategy of several key vendors.

_

² Other team members could include additional technologists, an application architect, a systems analyst or a business systems analyst.

Rate Alternative Solutions

Assume that the project team has come up with the challenges and weights shown in the first two columns of **Table 3**. Also, assume there are two viable alternative WAN designs, one from Vendor A and the other from Vendor B.

Table 2: Evaluating Vendors					
Challenge	Weighting	Vendor A Scores	Vendor A Total	Vendor B Scores	Vendor B Total
Improving application performance	40	9	360	7	280
Increase availability	25	8	200	8	200
Reduce cost	20	7	140	8	160
Increase security	15	7	105	6	90
Grand Total			805		730

As shown in **Table 3**, the team used a 10-point scale to evaluate how the two solutions responded to each of the WAN challenges³. The fourth column from the left demonstrates how the total score for vendor A was determined. The team gave Vendor A a 9 for improving application performance. That 9 was multiplied by the weight of that challenge (40) to arrive at a score of 360. That process was repeated for each challenge and the sum of the four scores (805) was determined. That process was also applied to Vendor B, whose total score of 730 is significantly lower than Vendor A's total score. If the scores were closer, it might be valuable to do a "what-if" analysis. For example, what-if reducing cost was weighted higher than 20? What-if Vendor B got an 8 for improving application performance?

When the team presents their vendor evaluation to management there should be little if any discussion of either the set of WAN challenges or the weights that were used in the evaluation as those items should already have been reviewed with management and adjusted based on their feedback. This limits the discussion with management to a small set of well-defined, well-confined questions such as why vendor A got a 9 for improving application performance and vendor B got a 7. In most cases, management, particularly senior management, won't spend much time on questions like that.

Manage Existing Contracts

One possible decision that a network organization could make after evaluating alternative WAN designs is to decide to significantly reduce their use of MPLS. The implementation of that decision might not be possible in the short term based on the contract that they have with their WAN service provider. That follows because most contracts for WAN services include a Minimum Revenue Commitment (MRC) on the part of the company acquiring the services. If the company significantly reduces their use of MPLS, the company's spend with the service provider could fall below their MRC which would result in some form of penalty or other action, such as extending the life of the contract.

2017 Guide to WAN Architecture and Design

³ The team needs to agree on the meaning of the 10-point scale. For example, the team may decide that a "6" means "meets most requirements" and that a "10" means "far exceeds all expectations".

The fact that a company isn't able to significantly reduce their use of MPLS in the short terms isn't necessarily a major problem as few companies would want to do a flash cut of a new WAN architecture. An approach that incorporates the need to minimize the risk of implementing a new WAN architecture, with the need to honor existing contracts, and the typical requirement to work within the current manpower limits of the network organization is to phase in the new WAN architecture over time. While this approach makes a lot of sense, it will reduce the potential savings that results from the WAN upgrade and this needs to be reflected in the business case.

Build a Business Case

The easiest and most compelling way to build a business case for a WAN upgrade is to base the business case on hard savings. Hard savings refers to a verifiable reduction in spending such as the reduction that results from cancelling an MPLS service and replacing it with a less expensive Internet circuit. In almost all cases the network organization will want to pilot the proposed products and/or services to verify the potential savings prior to building the business case.

Soft savings, while important, can be both harder to measure and more difficult to use as justification for upgrading the WAN. There are many types of soft savings associated with a WAN upgrade including:

- Improving the quality of VoIP;
- Protecting the company's revenue stream by increasing the availability of key applications;
- Improving employee productivity;
- Responding to compliance requirements;
- Enabling one or more of the company's key business initiatives such as pursuing mergers and acquisitions;
- Improving the performance of one or more applications;
- Supporting mobile workers;
- Enabling one or more of the IT organizations key initiatives such as implementing virtual desktops or making additional use of public cloud services.

Depending on your company, cost avoidance may be considered a hard saving or it may be considered a soft savings. As mentioned, one example of cost reduction is the savings that results from replacing MPLS bandwidth with Internet bandwidth. An example of cost avoidance is the savings that occurs from not having to increase the capacity, and hence the cost, of an MPLS circuit.

Key WAN Architecture and Design Considerations

Below is a description of some of the considerations that network organizations need to include in their evaluation of alternative WAN architectures and designs.

The Role of Cellular

Cellular services have long been used as a back-up to wireline WAN services. One of the reasons for this is that the types of issues, such as a backhoe cutting the wired access lines, that would cause a wireline access service to fail would have no impact on a cellular service.

Increasingly cellular services are being used as either the primary WAN link or are used in conjunction with a wireline service in an active-active configuration. In the latter case, traffic is typically load-balanced over the cellular and wirelines services using the type of policy capability that is described below.

Some of the other key use cases for cellular services in an enterprise WAN include:

Temporary networks

The time that it takes to get a wireline service such as MPLS installed is typically a month or longer. In the vast majority of cases that means that wireline services are not a feasible solution for the types of temporary networks that are needed to support locations such as construction trailers or pop-up stores.

In-vehicle networks

While it may or may not be desirable to use an MPLS or DSL-based Internet service to provide connectivity to a fixed site such as a branch office, it isn't possible to use these services to provide connectivity to vehicles such as cars, trucks and school buses.

Internet of Things (IoT)

IoT is a phrase that refers to the internetworking of a wide range of physical devices, buildings and other things that are embedded with electronics and/or sensors. For example, *a thing* may be a sensor inside of a traffic light. In situations like this, similar to in-vehicle networks, cellular services are the only feasible option.

Location of Key WAN Functionality

In a traditional WAN, functionality such as optimization is typically provided onsite. That's still a viable option. However, there are a number of other viable options. Below are some examples of where key functionality may be provided. In many instances network organizations will find that the best solution is for WAN functionality to be located in multiple types of sites.

Service Provider's Central Office (CO)

As described in a <u>blog</u>, one of the Network Functions Virtualization (NFV) use cases that the European Telecommunications Standards Institute (ETSI) defined is referred to as Virtual Network Functions (VNF) as a Service (VNFaaS). This is more commonly referred to as virtual CPE (vCPE). As part of a vCPE offering a service provider would enable customers to access functionality, such as optimization, that is provided on servers in one or more of the service

provider's COs. Alternatively, functionality such as optimization could be provided in a CO and other functionality, such as security, could be provided onsite at the customer's facility.

A Software-as-a-Service (SaaS) Site

The initial SaaS offerings focused on business applications such as supply chain management. However, in the current environment most if not all L4 - L7 functionality can be acquired from a SaaS provider. For example, branch office traffic can be tunneled to a SaaS provider's site where the traffic is inspected for malware.

An Infrastructure-as-a-Service (laas) Site or at a Colocation site

One example of the use of an laaS/Colocation site is that instead of having firewall functionality at each branch office, traffic from branch offices is tunneled to a nearby laaS/Colocation site which provides the firewall functionality.

A Company's Central Facilities

Instead of using an IaaS or SaaS provider for the type of functionality described in the preceding two paragraphs, a network organization can implement that functionality in one or more of their own facilities, such as a data center or a regional headquarters building.

The Use of Dynamic Multi-Pathing

Being able to load balance traffic over multiple WAN links isn't a new capability. However, in a traditional WAN this capability was difficult to configure and the assignment of traffic to a given WAN link was usually done in a static fashion.

Functionality currently exists that enables load balancing over WAN links to be done based on a combination of policy and the characteristics of the WAN links. One approach to leveraging this functionality is to dynamically load balance traffic over both MPLS and Internet links. One goal of this approach is to reduce the capacity, and hence the cost, of the MPLS links and to replace the reduced MPLS bandwidth with relatively inexpensive Internet bandwidth. An alternative approach is to use this functionality to load balance traffic over multiple Internet links.

The Use of Policy

There is a broad movement to implement a policy based approach to all aspects of IT, including networking. Policies can be based on a hierarchical system of rules designed to deal with the complexities of the environment, and to manage the relationships among users, services, SLAs, and device level performance metrics. One way that policy can be implemented is at the application level. For example, if the performance of an application begins to degrade because the CPU utilization of a physical server hosting a virtualized network function (VNF) that is used by that application becomes excessive, the VNF may be moved to a server with lower utilization, if that is in line with the policy that exists for that application. As was alluded to in the discussion of dynamic multi-pathing, another way to implement policy-based networking is to control which WAN link application traffic transits based in part on centralized policies that consider the business criticality and the delay sensitivity of that application.

Network Topologies

A traditional branch office WAN is often based on a hub and spoke design. That topology is efficient in an environment in which the bulk of the traffic flows from a branch office to a data center. That topology becomes notably less efficient if the bulk of the traffic flows between branch offices. In that type of a network, a highly meshed, or possibly a fully meshed design is more appropriate.

Support for Real-Time Applications

The 2016 State of the WAN Report contained the results of a survey in which the survey respondents were given a set of a dozen factors and were asked to indicate which factors would likely have the most impact on their WAN over the next twelve months. One of the top factors mentioned by the respondents was supporting real-time applications such as voice and/or video.

There are a number of ways that a WAN can provide support for real-time applications. One way was already mentioned – the use of a policy engine that can steer certain traffic to the most appropriate WAN link. In some cases, the optimization techniques that are mentioned below can make it easier to support real-time applications.

Optimization

Improving application performance is a key issue facing network organizations. **Table 4** lists some of WAN characteristics that impact application delivery and identifies WAN optimization techniques that can mitigate the impact of those characteristics.

Table 3: Techniques to Improve Application	Performance		
WAN Characteristics	WAN Optimization Techniques		
Insufficient Bandwidth	Data Reduction:		
High Latency	Application Acceleration:		
Packet Loss	Congestion Control Forward Error Correction (FEC) Packet Reordering		
Network Contention	Quality of Service (QoS)		

Security

Increasing security is a key issue facing network organizations. As they examine new WAN solutions, network organizations need to look at functionality such as firewalls and determine whether that functionality should be in a branch office or in a central site. They also need to evaluate whether or not to implement other security functionality, including:

- Encryption;
- Device authentication;
- URL filtering;
- Network access control;
- IDS/IPS:
- Micro-segmentation;
- Anti-malware.

Automation

The use of policy for managing application performance was already discussed. Another use of policy is for device configuration and security policy management. Some WAN solutions make it possible to create device configurations and security policies in a centralized location and push them out to branch offices in a way that requires no manual intervention at the branch offices.

Visibility

There are many tools in the marketplace that are positioned as being able to provide network organizations with all of the visibility into their WAN that they need for troubleshooting problems related to network and/or application performance degradation. However, whether it is the deficiencies of those tools or the troubleshooting processes used by network organizations, survey data contained in the 2016 State of the WAN Report showed that less than one out of five network organizations has all of the visibility that they need to effectively troubleshoot problems. In addition, roughly half of network organizations report having visibility into their WAN that either has frequent gaps or that is barely adequate.

Evaluating new WAN solutions creates an opportunity and a challenge for network organizations. The opportunity is that by implementing a new WAN design, network organizations might be able to increase their visibility into the WAN. The challenge is that network organizations need to ensure that as they explore new WAN alternatives that they evaluate the visibility provided by each of those alternatives.

Customer Premise Equipment

There are alternatives for the customer premise equipment (CPE) that is available both at the branch office and at the data center. One key option is whether the network organization wants to continue to use their existing routers or to replace them with a new device. Another consideration is the ability of the CPE to support the dynamic insertion of L4 – L7 services.

About the Webtorials® Editorial/Analyst Division

The Webtorials® Editorial/Analyst Division, a joint venture of industry veterans Steven Taylor and Jim Metzler, is devoted to performing in-depth analysis and research in focused areas such as Metro Ethernet and MPLS, as well as in areas that cross the traditional functional boundaries of IT, such as Unified Communications and Application Delivery. The Editorial/Analyst Division's focus is on providing actionable insight through custom research with a forward-looking viewpoint. Through reports that examine industry dynamics from both a demand and a supply perspective, the firm educates the marketplace both on emerging trends and the role that IT products, services and processes play in responding to those trends.

Jim Metzler has a broad background in the IT industry. This includes being a software engineer, an engineering manager for high-speed data services for a major network service provider, a product manager for network hardware, a network manager at two Fortune 500 companies, and the principal of a consulting organization. In addition, he has created software tools for designing customer networks for a major network service provider and directed and performed market research at a major industry analyst firm. Jim's current interests include cloud networking and application delivery.

For more information and for additional Webtorials® Editorial/Analyst Division products, please contact Jim Metzler or Steven Taylor.

Published by
Webtorials
Editorial/Analyst
Division

www.Webtorials.com

Professional Opinions Disclaimer

All information presented and opinions expressed in this publication represent the current opinions of the author(s) based on professional judgment and best available information at the time of the presentation. Consequently, the information is subject to change, and no liability for advice presented is assumed. Ultimate responsibility for choice of appropriate solutions remains with the reader.

Division Cofounders:

<u>Jim Metzler</u> Copyright © 2017 Webtorials

<u>Steven Taylor</u>

For editorial and sponsorship information, contact Jim Metzler or Steven Taylor. The Webtorials Editorial/Analyst Division is an

analyst and consulting joint venture of Steven Taylor and Jim

Metzler.